

Eingegangen: 15.8.2014

1. Handlungsschnelligkeit – eine wichtige Anforderung im modernen Fußball

2. Theorieposition

3. Wahrnehmungs- und Entscheidungsleistungen

![Abbildung 1: Agility nach Shepard und Young (2006)](image)
fußballer aufgrund ihrer Erfahrung anhand weniger Informationen in kürzerer Zeit genauere Entscheidungen treffen können als Nicht-Elitefußballer.

4. Fähigkeit zu schnellen Richtungswechseln

Bezüglich der Technik spielen das Abbremsen der eigenen Körpermasse in kürzester Zeit und die erneute Beschleunigung eine große Rolle. Untersuchungen ergaben, dass die Bodenkontaktdauer, die Kniestreckung des Abdruckbeins, die Oberkörperrhythmisierung sowie die Körperwinkelschaffung vor dem Laufausfall einen Einfluss auf die Schnelligkeit der Richtungswechsel haben (Green, Blake & Caulfield, 2011; Suzuki, Nomoto, & Ake, 2008; Jamison, Park & Chaudhari, 2012; Sasaki, Nagano, Kaneko, Sakurai & Fukubayashi, 2011).

5. Der Footbonaut als Mess- und Informationssystem

6. Überprüfung der Gütekriterien des Mess- und Informationssystems

In den Mittelpunkt der Prüfung wurde die Validität gestellt. Dazu wurde in einer Studie überprüft, ob die im Footbonaut über die mittlere Handlungszzeit und Tref- ferquote gemessene Agility geeignet ist, Unterschiede in der Leistungsfähigkeit von Spielern zu bestimmen und inwieweit der Einstellung von Entscheidungsleistungen zur Lösung dieser motorischen Aufgabe eine Rolle spielt.

An der Untersuchung nahmen (im Berliner Foot- bonaut) elf Nachwuchsfußballspiel- er (n = 88, m = 66, k = 9,2 kg, M = 176 ± 7,5 cm, Jahrgang 1997/98) aus der U16-Mannschaften verschiedener Leistungsklassen teil. Die Einteilung der Gruppen erfolgte anhand der Ligazugehörigkeit (Kreis- bis Regionalliga) und des Status „DFB-lizenziert“. Spieler aus den DFB-Nachwuchsleistungszentren, die in der Verbandsliga oder höher spielen, bilden die Gruppe 1. Die Probanden wurden aufgeteilt, sich in der Mitte der Testzone zu positionieren.

- Spieler aus den DFB-Nachwuchsleistungszenaten erreichten bessere Handlungszeiten und Trefferquoten im Fussballauftritt (Tabelle 2). Die Probanden hatten eine mittlere Handlungszeit von 2,6 s bei einer mittleren Trefferquote von 66 Prozent.
- Die Reliabilität konnte mit Cronbachs α = 0,9 und ICC3,1 = 0,9 geschätzt werden.
- Hinsichtlich der Paarvergleiche stimmten die Schätzer (Trainer) ausreichend in ihren Bewertungen über ein. Deshalb wurde schließlich das Urteil des Trainers als Vergleichskriterium zum Ergebnis im Fussballauftritt verwendet. Weiterhin konnte eine hohe Konkordanz für diese dichotomen Daten berechnet werden.
- Der Zusammenhang zwischen dem Trainerurteil zur Entscheidungsleistung und der im Fussballauftritt gemessenen Handlungszeit wurde mit einem Korrelationskoeffizienten von r = -0,29 ermittelt. Damit verfügen Spieler mit besseren Entscheidungsleistungen über eine ge- ringere Handlungszeit.
- Die Effektkräfte der Unterschiede in den Trefferquoten sind gering.
- Trainer und Co-Trainer stimmen in ihren Einschätzungen zum Entscheidungsverhalten der Spieler ausreichend überein.
- Gute Entscheidungsleistungen im Wettkampf korrelieren mit der Handlungszeit im Fussballauftritt. Der Zusammenhang ist jedoch nicht sehr streng.

Wir schließen daraus, dass die Handlungszeit im Fussballauftritt als ein Kriterium der sportlichen Leistung im Fussball verwendet werden kann. Dies ergibt sich aus der fussballspezifischen Bewegungsanforderung mit Ball und der Realisierung von Richtungswechseln im Fussballauftritt. Ähnliche Ergebnisse zur Handlungszeit von fussballspezifischen Bewegungen wurden

<table>
<thead>
<tr>
<th>Fussballauftritt</th>
<th>Gruppe 1</th>
<th>DFB-Nachwuchsleistungszentrum</th>
<th>Gruppe 2</th>
<th>Andere</th>
<th>t-Wert (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Handlungszeit [s]</td>
<td>2.59 (0.19)</td>
<td>2.85 (0.20)</td>
<td>2.85 (0.20)</td>
<td>5.71 (1.35)</td>
<td></td>
</tr>
<tr>
<td>Trefferquote [%]</td>
<td>68.5 (11.60)</td>
<td>64.14 (11.53)</td>
<td>64.14 (11.53)</td>
<td>1.83 (0.18)</td>
<td></td>
</tr>
</tbody>
</table>

Tabelle 2: Unterschiede der Handlungsschmechnlichkeit und Passpräzision von Fuβballspielern (U16) im Fussballauftritt (*p < 0.05, in Klammern Standardabweichungen und Effektstärken [d])

Belastungsfaktor	1. Trainingseinheit
Art der Trainingsübung | Fußballonaut „Allgemeines Training“
FF |
CP = 50 |
delay = 800 ms |
range = 90 Grad peripher |
gle = 2 |
Belastungsumfang | 80 Bälle |
Belastungsintensität | hoch |
Belastungsdichte | 2-mal 10 Bälle (2 bis 3 min Pause) |
4-mal 15 Bälle (2 bis 3 min Pause) |
Güte der Bewegung | schnell und präzise |

Tabelle 3: Einstellungen im Footbonaut (Legende: FF = Flash-Flash [untere Ballkanonen und untere Zielfelder]. CP = Canon Power [Ballgeschwindigkeit], delay = Zeitzerspannung zwischen den Bällen, range = Lage der Zielfelder ausgehend vom Spieler, angle = Winkel zur Veränderung der Ballflugkurse)

bereits berichtet (Krause 2012a; Konzog 2019; Ali et al., 2007).

7. Ausblick auf ein Training im Footbonaut
Die Untersuchungen zur Validität haben uns veranlasst, Erfahrungen beim Einsatz des Footbonaut im Training zu sammeln. Planungsansätze für diese Aufgabe sind Aspekte der Wahrnehmung und Entscheidungsleistungen und der Fähigkeit zu schnellen Richtungswechseln. Auf dieser Grundlage sollen im folgenden Abschnitt Anregungen für die Konzipierung einer zielgerichteten Trainingsbelastung im Footbonaut gegeben werden. Art und Größe der Belastungen werden auch für diese Aufgabe durch die üblichen Belastungsfaktoren (Berger & Minow, 2014) beschrieben. Die Belastungsfaktoren dienen der systematischen Trainingsplanung und -steuerung und erfassen die Beanspruchung des Organismus. Sie können nach (1) Art der Trainingsübung (z. B. Übungen mit Ball, Übungen ohne Ball), (2) Belastungsintensität (Schwierigkeit der Übungsaufgabe), (3) Belastungsumfang (Anzahl der Wiederholungen), (4) Belastungsdichte (Zeitabstände zwischen den Übungen) und (5) Güte der Bewegungsausführung (Qualität der Ausführung, schnell, präzise, technisch „sauber“) eingeteilt werden. Diese Zuordnung ist notwendig, um die tatsächlich realisierte Trainingsbelastung mit der geplanten zu vergleichen und ggf. zu korrigieren. Im Footbonaut verwenden wir Kennzahlen, wie z. B. die Geschwindigkeit der abgeschossenen Bälle, die Anzahl der Wiederholungen (Bälle) pro Session oder auch die Trainingseinheiten pro Woche (Tabelle 3).

Es bietet sich an, den Footbonaut zum einen schwerpunktmaßig zum Training der Wahrnehmung und der Entscheidungsleistungen und zum anderen zum Training der Richtungswechsel mit Ball zu nutzen.

Trainingsziele mit dem Schwerpunkt „Wahrnehmung und Entscheidungsleistungen“ sind zu empfehlen:
- Verbesserung der Ballkontrolle und Schnelligkeit bei unterdrückten Signaltonen und indizierten Störgeräuschen (Stadionlärm);
- Verbesserung der Ballkontrolle und Schnelligkeit mit Zuzusaufgaben (Ballkontakt verbunden mit dem definierten Verlassen eines Spielfelds), mit dem Schwerpunkt „Richtungswechsel mit Ball“;
- Verbesserung der Ballkontrolle und Schnelligkeit bei erhöhten Laufanforderungen („Erwungen“ durch eine niedrige Zuzugaufgabe und/oder simuliertes Zweikampfverhalten [z. B. „Vordecken“]);
- Verbesserung der Ballkontrolle und Schnelligkeit (Vorbereitungsspezifischer Laufwege).

Realisierungen des „Richtungswechsels mit Ball unter Zweikampfbedingungen“ zeigen, dass damit Belastungen provoziert werden, die als konsistent zu charakterisieren sind. Dies wird u. a. durch Laktatmessungen (TSG Hoffenheim) bestätigt, wobei für dieses Trainingsmittel Laktatwerte im mittleren Bereich von 4,3 bis 6,7 ermittelt wurden. Die höchsten akkumulierten Laktatwerte (max. 6,7 mmol/l) wurden beim sogenannten „Vordecken“ erreicht (Tabelle 4). Geringere Werte wurden gemessen, wenn die Zeit zwischen den abgeschossenen Bällen (Delay) auf 1,6 s anstatt 800 ms gestellt wurde. Andere Versuche mit 16-Jährigen, die eine Belastungszeit von 2 min (ca. 25 Bälle) realisierten, ergaben am Übungsende Pulswerte von 170 Schlag/min.

<table>
<thead>
<tr>
<th>Session</th>
<th>Laktatwerte (mmol/l)</th>
<th>Spieler</th>
</tr>
</thead>
<tbody>
<tr>
<td>5 Bälle (360°)</td>
<td>2,4-3,0</td>
<td>n = 6</td>
</tr>
<tr>
<td>20 Bälle (360°)</td>
<td>2,6-4,4</td>
<td>n = 9</td>
</tr>
<tr>
<td>25 Bälle (360°)</td>
<td>2,9-4,2</td>
<td>n = 6</td>
</tr>
<tr>
<td>32 Bälle (360°)</td>
<td>3,4-5,1</td>
<td>n = 7</td>
</tr>
<tr>
<td>15 Bälle (Zweikampfbedingungen, 2 Spieler, 90°)</td>
<td>4,3-6,7</td>
<td>n = 3</td>
</tr>
</tbody>
</table>

Tabelle 4: Laktatwerte von Fußballspielern (U17-U23) im Footbonaut am Übungsende beim Einsatz verschiedener Trainingsmittel
1. Training der Beidfüßigkeit,
2. Training der Vororientierung,
3. Training der emotionalen Stabilität (ei- nem schlechten Pass müssen keine schlechten Fäße folgen).
4. Technikautomatisierung,
5. Technikkorrektur (unnötige Schritte vor dem Setzen des Standbeins erhöhen die Handlungszeit),
6. spezielles Torwarttraining (Fangen, Umschalten und Abwerfen),
7. Rehabilitationstraining (dosierte Zu- spiele nach z.B. Innenbandverletzung Bein, Quantifizieren des Rehabilita- tionsfortschritts),

8. Schlussfolgerung

Die Literaturliste zum Beitrag steht auf www.leistungssport.net zum Download bereit.

Korrespondenzadresse
Christian Salo, Hochschule für Gesundheit & Sport, Technik & Kunst, Berlin, Vulkanstraße 1, 10367 Berlin
E-Mail: christian.salo@my-campus-berlin.com

<table>
<thead>
<tr>
<th>Übungen</th>
<th>Einstellungen</th>
<th>Dauer</th>
<th>Anzahl der Bälle</th>
<th>Trainingsteil</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Zufall, 90°, peripher, 2, 50, FF, 800</td>
<td>1,14</td>
<td>10</td>
<td>Einleitender Teil</td>
</tr>
<tr>
<td>2</td>
<td>Zufall, 90°, peripher, 2, 50, FF, 800 Signaltonne unterdrücken</td>
<td>1,24</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Zufall, 360°, 2, 50, FF, 800 Signaltonne unterdrücken, Störgeräusche indizieren</td>
<td>1,29</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Zufall, 360°, 2, 50, FF, 800 Signaltonne unterdrücken, Störgeräusche indizieren</td>
<td>1,39</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>Zufall, 360°, 2, 50, FF, 800, Signaltonne unterdrücken, Störgeräusche indizieren</td>
<td>1,38</td>
<td>15</td>
<td></td>
</tr>
</tbody>
</table>
| 6 | Zufall, peripher 90°, 2, 50, FF, 800 | 1,14 | 10 | Ausklang (Session nach Wohl)

Tabelle 5: Mögliche Trainingseinheit mit Schwerpunkt „Wahrnehmung und Entscheidungsleistung“
Legende: Zufall = zufällige Auswahl der Balkkanonen und Zielfelder, peripher = Gradzahl = range, 2 = angle, 50 = CP, FF = Lage der Balkkanonen und Zielfelder, 800 = delay

Dankesagung

Summary
Footbonaut – an innovative testing and information system in football
Footbonaut is a test and information system specifically developed for the sport of football for measuring speed of action (agility). In the present exploratory study, it was examined, to what extent action speed, measured by using medium action time and hitting rate, is suitable to determine differences in the performance of players and whether their decision performances are important for solving this motor task. The study included male youth football players (n = 88) from U16 teams of various performance categories.